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Q: How can I find all the groups of ten numbers out of a set of 45? 
More generally, how can I find all the subsets of a particular size in a 

set of numbers? For example, if I have these six numbers:  

5, 6, 7, 8, 9, 10 

and I want the subsets with three members, the result would be: 

5, 6, 7 

5, 6, 8 

5, 6, 9 

5, 6, 10 

5, 7, 8 

5, 7, 9 

5, 7, 10 

... 

–Wayne Stephenson (via Advisor Forums) 

A: Generating all the combinations of a list is a classic problem in 

mathematics. It's also a great example of a problem where recursion 
produces a much simpler solution than other approaches. Let's start by 

talking about the general solution, then we'll dig into recursion, and 
finally, I'll show a recursive solution to this problem. 

First, it's important to note that we're talking here about combinations, 
not permutations. Combinations are all the subsets without regard to 

order; permutations are the subsets where the order of elements 
varies. So, in the example above, the list of combinations includes (5, 

6, 7), but not (6, 5, 7) or (7, 6, 5) or any of the other orderings of 
those three numbers. The list of permutations would include all of 

them. 

How do you find all the combinations of a set? The list above gives you 

a clue. In pseudo-code, it looks something like: 

FOR nI = 1 TO nListSize-nSubsetSize + 1 
  * Make the item at position nI the first item 
  FOR nJ = nI+1 TO nListSize-nSubsetSize+2 
    * Make the item at position nJ the second item 
    FOR nK = nJ+1 TO nListSize-nSubsetSize+3 



      * Make the item at position nK the third item 
       ... 
    ENDFOR 
  ENDFOR 
ENDFOR 

If you know the subset size ahead of time, you can write code with 
nested loops like this. However, if you want to solve the general 

problem, where you can have a list of any size and subsets of any size, 
you have to take another approach. 

Enter recursion. Recursion is the act of a program calling itself. The 

most familiar example of recursion is probably the definition of the 
factorial function, the product of all the numbers from 1 to n, normally 

expressed with an exclamation point: 

0! = 1 
n! = n * (n-1)! for n>=1 

You can write code to compute factorials in VFP like this: 

FUNCTION Factorial( nNumber AS Number ) 
LOCAL nResult 
IF nNumber = 0 
   nResult = 1 
ELSE 
   nResult = nNumber * Factorial(nNumber-1) 
ENDIF 
RETURN nResult 

This example points out an important rule for recursive functions—

there must be a termination point defined. For factorial, it's passing 0. 

How can we solve the combination problem recursively? The idea is to 

call a function once for each number in the subset; the function 

chooses one item. The termination point is having the specified 
number of items. 

When writing recursive code, you need to be extra careful about the 
scope of variables. Be sure to declare any variables used only within 

the current call as local, so another call doesn't step on their values. 
Sometimes, you have items you want modified by successive calls. For 

the combination problem, we track the number of subsets found so 
far. Make sure to declare those variables private prior to calling the 

recursive routine. 

It's not unusual to have two functions involved in a recursive situation. 

The first sets things up, including declaring any private variables, and 



makes the initial call to the actual recursive routine. That's the case for 

solving this problem. The first function creates a cursor to hold the 
results, initializes a private counter variable and then calls the 

recursive function. 

Rather than worrying about the actual items that need to go into 

subsets, these functions assume that they're stored in an array or 
cursor where each item can be accessed by its position. So, each 

subset in the resulting cursor is the list of positions where the 
appropriate items can be found. 

Here's the code: 

LPARAMETER nCount, nSetSize 
* Parameter checking omitted 
PRIVATE nRecCount 
* Create a cursor to hold results 
cFieldList = "" 
FOR nItem = 1 TO nSetSize 
   cFieldList = cFieldList + "Item" + ; 
                  TRANSFORM(nItem) + " N(4)," 
ENDFOR 
cFieldList = LEFT(cFieldList, LEN(cFieldList)-1) 
CREATE CURSOR Results (&cFieldList) 
nRecCount = 0 
GetNextValue(nCount, nSetSize, 1, 1) 
RETURN nRecCount 
PROCEDURE GetNextValue 
LPARAMETERS nCount, nSetSize, nStartPos, nResultPos 
* Parameter checking omitted 
LOCAL nPos, nOldRecCount 
FOR nPos = nStartPos TO nCount-nSetSize+nResultPos 
   nOldRecCount = nRecCount 
    
   * Drill down first 
   IF nResultPos<nSetSize 
      GetNextValue(nCount,nSetSize,nPos+1,nResultPos+1) 
   ENDIF 
    
   * Save results 
   IF nResultPos=nSetSize 
      nRecCount = nRecCount + 1 
      APPEND BLANK IN Results 
   ENDIF 
   GO nOldRecCount + 1 
   SCAN REST 
      REPLACE ("Item"+TRANSFORM(nResultPos)) ; 
              WITH nPos IN Results 
   ENDSCAN 
ENDFOR 
RETURN 



The trickiest part of this particular problem turns out to be putting the 

values into the result. Having determined the value for a particular 
position, it may apply to a whole series of records in the result. But at 

the time we figure it out, we don't know how many. So we wait to 
save the value until we've drilled all the way down and come back. By 

that point, all the appropriate records have been added. The 
nOldRecCount variable keeps track of the record pointer position when 

we enter the routine each time. (Note that it's local so that each call to 
the function has its own variable.) When we return from the recursive 

call, we need to put the value for this position into the appropriate 
field of every record added after that. 

Let's look at a simple example. Suppose we have four items and want 
all combinations with two items. The first time GetNextValue is called, 

it receives the following parameters: 

4, 2, 1, 1 

indicating that there are four items total, we want subsets with two 

items, this item should start with position 1 and we're working on the 
first element in the resulting subsets. 

The loop starts by setting nPos to 1; in other words, the first item in 
the subsets we're working on now is item 1. Since nRecCount is 0, 

nOldRecCount is set to 0. The recursive call passes these parameters: 

4, 2, 2, 2 

So, on the second call to GetNextValue, nPos starts at 2; that is, the 
second item in the subset we're now working on is item 2. Again, 

nOldRecCount is set to 0. Because nResultPos (2) is the same as 
nSetSize (2), there's no recursive call and we add a record to the 

cursor. The REPLACE command sets field Item2 to 2 in the newly 
added record (leaving field Item1 blank for now). 

We return to the top of the loop and nPos becomes 3. Again, there's 

no recursive call and we add another record, this time setting Item2 to 
3. We go through the loop one more time, adding another record, 

setting Item2 to 4. 

At this point, we return to the original call to GetNextValue. nResultPos 

(1) isn't equal to nSetSize (2), so we don't add a record. We move the 
record pointer to one beyond nOldRecCount, in this case, record 1, and 

we loop through all records from there to the end of the cursor (there 
are three at this point), setting field Item1 to 1. 



The loop continues, with nPos=2, but this should be enough to 

demonstrate the technique. 

Recursion in VFP is limited by the program stack, 128 in recent 

versions. For this program, that means it can't handle subsets of more 
than 127 items. 

The program above is included as GetSetsToCursor.PRG on this 
month's Professional Resource CD. 

Incidentally, there's a connection between the factorial function and 
combinations. The number of combinations can be expressed as: 

nCount!/(nSetSize! * (nCount-nSetSize)!) 

–Tamar 


